
23
SQL
The SQL proc lets you execute SQL statements that operate on SAS data.
SQL, Structured Query Language, is the closest thing there is to a standard
language for retrieving data from databases. SQL is not exactly a program-
ming language, because it does not describe a sequence of actions. Instead, an
SQL statement describes an outcome.

The simplest and most common action in SQL is to extract a subset of
data from a table. The SQL statement to accomplish this is a description
of the data to extract. SQL statements can often accomplish the same results
as SAS statements, but because SQL’s approach is so different, the SQL
statements may look nothing like the SAS statements that do the same thing.
For some tasks that involve combining data from several tables, the SQL
approach can be more direct and concise than the SAS approach. There are
other reasons why you might use SQL code in a SAS program. If you use
SAS/ACCESS to connect to a database management system, you can write
SAS SQL statements to access a database or to combine database data with
SAS data. Or, if you move an existing project into the SAS environment, you
can incorporate the project’s existing SQL code into the new SAS programs.

IBM developed SQL in the 1970s as a database interface based on the
relational database model, which IBM also developed around that same time.
SQL has been used in nearly every relational database management system
beginning with the original release of Oracle in 1979. It has been the subject
of a series of ANSI and ISO standards since 1986. However, no implement-
ation of SQL has ever followed any standard exactly. SAS SQL is mostly
compliant with the 1992 SQL standard.

Lexicon

The prerelease version of SQL was called SEQUEL (for Structured English
Query Language), and some people still pronounce SQL as “sequel.”

SAS was originally developed around the same time as SQL, and both
use many of the same concepts of data organization. However, some of the
most important data objects are called different names in the SAS and SQL
environments. The following table translates between SAS and SQL
terminology.

510 Professional SAS Programming Logic

SAS Term SQL Term Description
SAS data file table a file containing organized data

variable column a distinct data element

observation row an instance of data, including one value
for each variable or column

missing null a special value of a data element that
indicates that a value is not available

integrity constraint constraint a specific restriction on the value of a data
element

Lexicon

The SAS and SQL terms for data objects differ because of the different
purposes for which they were originally envisioned. The SAS terms
variable, observation, and missing are the terms used in the field of statistics.
The SQL terms table, column, and row are based on relational database
theory.

The PROC SQL step starts with the PROC SQL statement, which indicates that
the statements that follow are SQL statements. The PROC SQL statement can set
options that affect the execution of the SQL statements. These options can be
changed between SQL statements using the RESET statement. SQL uses an
interpretive style, executing each statement as soon as it reaches it. You can
write global statements to execute between the SQL statements; the settings
of a TITLE statement or other global statement take effect for the following
SQL statement. Use the QUIT statement, if necessary, to mark the end of
the PROC SQL step. Because the proc executes each statement immediately, it
ignores the RUN statement.

The syntax of the PROC SQL step is summarized as:

PROC SQL options;
statement
. . .
QUIT;

Each statement after the PROC SQL statement can be an SQL statement, a
RESET statement, or a global statement. The QUIT statement that marks the
end of the step is optional.

Among the various differences in style between SAS and SQL syntax,
there is one difference that is especially important to notice. In SQL, a
reference to a table, column, or any other data object is an expression.
Therefore, in any list of objects in an SQL statement, you must write commas
as separators between list items. This contrasts with the SAS style, in which a
reference to an object is merely a name, and in lists, the names are separated
only by spaces.

SQL 511

Query Expressions
SQL syntax is built around specific kinds of expressions, the most important
of which is the query expression. A query expression defines a set of data in
the shape of a table. The data of a query expression could be the entire
contents of a table, but more often, it is a smaller amount of data extracted
from one or more tables.

Lexicon

Strictly speaking, the simple form of the query expression that is
described here is a table expression. More complicated query expressions
use set operators to combine two or more table expressions.

The SELECT and WHERE Clauses
A minimal query expression contains the word SELECT, a list of columns,
the word FROM, and a table. These terms form a SELECT clause, to indicate
what table to draw data from, what columns to use, and the order of the
columns. This is an example of a SELECT clause:

SELECT ADDRESS, TITLE, SIZE FROM MAIN.PAGES

The table is the SAS dataset MAIN.PAGES; the columns that are selected are
the variables ADDRESS, TITLE, and SIZE in that SAS dataset.

This kind of query expression returns all the rows from the indicated
table. To return only selected rows, add a WHERE clause with the condition
for selecting rows. The syntax for the WHERE condition is the same as for
any WHERE condition in SAS software. This is an example of a query
expression with a WHERE clause:

SELECT ADDRESS, TITLE, SIZE FROM MAIN.PAGES
WHERE SIZE <= 81920

With the WHERE condition, the query expression returns only those rows
where the value of the column SIZE is no more than 81,920.

A SELECT clause and a WHERE clause are sufficient to form most query
expressions. The following table summarizes the syntax of these clauses:

Terms Meaning
SELECT column, column, . . . Selects columns and indicates their order
FROM table, table, . . . The table that contains the columns
WHERE condition Condition for selecting rows (optional)

The order of the clauses in a query expression is important. It is a syntax
error if the clauses are in the wrong order.

SELECT Statement
A query expression can be used by itself as a statement. This kind of SQL
statement is called a SELECT statement. It produces a table report of the data
that the query expression selects. This is an example of a PROC SQL step that

512 Professional SAS Programming Logic

executes a SELECT statement:

PROC SQL;
SELECT ADDRESS, TITLE, SIZE FROM MAIN.PAGES
 WHERE SIZE <= 81920;

As with any SAS statement, an SQL statement ends in a semicolon.
A SELECT statement can also contain an ORDER BY clause to indicate the

order of the rows. Write the sort order with commas between the columns.
Use the modifier DESC after a column to sort in descending order of that
column. This is an example of a SELECT statement with an ORDER BY clause:

SELECT ADDRESS, TITLE, SIZE FROM MAIN.PAGES
 WHERE SIZE <= 81920
 ORDER BY TITLE, SIZE DESC;

Print Output
Like the PRINT and REPORT procs, the SELECT statement produces print
output in table form. This example demonstrates the print output of the
SELECT statement:

PROC SQL;
SELECT * FROM MAIN.CITYS;
QUIT;

STATE POP URBAN

Ohio 10847040 81.4
Michigan 9295895 82.8

The SQL table output is similar to the output that the PRINT proc pro-
duces with the NOOBS and WIDTH=FULL options. It is similar to the output of
the REPORT proc with the HEADLINE and WRAP options. PROC PRINT and
PROC REPORT steps and output are shown here for comparison:

PROC PRINT DATA=MAIN.CITYS NOOBS WIDTH=FULL;
RUN;
PROC REPORT DATA=MAIN.CITYS NOWD HEADLINE;
RUN;

STATE POP URBAN

Ohio 10847040 81.4
Michigan 9295895 82.8

 STATE POP URBAN

 Ohio 10847040 81.4
 Michigan 9295895 82.8

List of Values
In a SELECT clause, use the keyword DISTINCT before the list of columns to
eliminate duplicates from the selected data. The result is a list of the distinct

SQL 513

combinations of values of the selected columns. If you list only one column
with the DISTINCT option, it produces a list of the different values of that
column.

The following example shows the effect of the DISTINCT keyword in a
query. The first query shows the value of TYPE for every row in the table.
The second query, with the word DISTINCT added, shows only the two
different values of TYPE, and it arranges them in sorted order.

SELECT TYPE FROM MAIN.LETTER;
SELECT DISTINCT TYPE FROM MAIN.LETTER;

TYPE

Vowel
Consonant
Consonant
Consonant
Vowel
Consonant
...

TYPE

Consonant
Vowel

Combining Tables
In relational database theory, it is expected that related columns are often
stored in separate tables. Queries often combine columns from two or more
tables. To write a query that draws columns from multiple tables:

• List the tables, separated by commas, after the keyword FROM.
• After each table name, write an alias. An alias is a one-word name for

the table that is used in the query. Programmers usually use single
letters for table aliases — often the letters A, B, and so on.

• In the query, identify columns with two-level names that combine the
table alias and the column name. For example, the column STATE in
the table whose alias is A is referred to as A.STATE.

• In the WHERE expression, include the condition for combining rows
between the two tables. Most often, the requirement for combining
rows is that the key variables match. For example, if the key variables
that connect two tables are DAY and STATE, the WHERE condition
could be A.DAY = B.DAY AND A.STATE = B.STATE. Writing the WHERE
condition correctly is critical for a multi-table query (assuming the
query uses tables that have multiple rows). If the WHERE condition is
incorrect, the result of the query could be an enormous number of rows
or no rows at all.

The query below is an example. It draws the columns NAME, AGE, and
SUBSPECIES from the table MAIN.TIGER and adds the column NATIVE
from the table MAIN.TSUBS. It shows only rows for which the values of
SUBSPECIES match between the two tables. The selected column names

514 Professional SAS Programming Logic

appear as the column headings in the output.

SELECT I.NAME, I.AGE, I.SUBSPECIES, T.NATIVE
FROM MAIN.TIGER I, MAIN.TSUBS T
WHERE I.SUBSPECIES = T.SUBSPECIES;

NAME AGE SUBSPECIES NATIVE

Leah 7 Bengal Bay of Bengal
Max 5 Indochinese SE Asia
Pierce 2 Siberian SE Siberia
Princess 3 Bengal Bay of Bengal
Stick 8 Sabertooth N Eurasia

Creating Files From Query Expressions
In a SELECT statement, the results of a query are converted to an output
object. Query results can also be stored as data. The CREATE TABLE statement
creates a table with the results of a query. The CREATE VIEW statement stores
the query itself as a view. Either way, the data identified in the query can be
used in later SQL statements or in other SAS steps.

A SELECT statement is converted to a CREATE TABLE statement by adding
terms to the beginning of the statement. The added words are CREATE TABLE,
the name of the table, and AS. This is an example of a CREATE TABLE statement:

CREATE TABLE WORK.PAGE80 AS
 SELECT ADDRESS, TITLE, SIZE FROM MAIN.PAGES
 WHERE SIZE <= 81920
 ORDER BY TITLE, SIZE DESC;

NOTE: Table WORK.PAGE80 created, with 25 rows and 3 columns.

The new table WORK.PAGE80 is a SAS data file. The log note that describes
it is the similar to the note that ordinarily describes a new SAS data file, but it
uses the SQL words table, columns, and rows in place of the SAS words SAS
data set, variables, and observations.

The CREATE VIEW statement creates an SQL view. It is the same as the
CREATE TABLE statement except that the word VIEW replaces the word TABLE.
A view can be used the same way a table is used. However, a view does
not operate the same way as a table. When a table is created, the query is
executed and the resulting data is stored in a file. When a view is created, the
query itself is stored in the file. The data is not accessed at all in the process
of creating a view. The log note says only that a new view has been stored:

NOTE: SQL view WORK.CABLES has been defined.

The query is executed, and the number of rows and columns determined,
only when a later program reads from the view.

Query expressions depend on librefs to identify the tables from which
they draw data. The libref definitions of an SQL view can be stored in the
view itself, so that the view is self-contained. At the end of the CREATE VIEW

statement, write a USING clause that contains LIBNAME statements. Write

SQL 515

the LIBNAME statements as that statement is normally written, but with
commas, rather than semicolons, separating multiple LIBNAME statements.

Column Expressions and Modifiers
Most columns in queries are simply columns of a table. However, this is only
one of the possibilities for writing a column expression in a query expression.
The table below lists various ways that a column expression can be formed.

Expression Description
column A column of a table.
table alias.column A column in the indicated table.
* All columns of all tables in the query.
table alias.* All columns of the indicated table.
constant A constant value.
expression An expression that computes a value using columns,

constants, operators, and functions.

When SAS variables are used as columns in a query, the SQL proc uses
the format and label attributes of the columns in the resulting output object,
table, or view. However, the SQL proc does not use the FORMAT or LABEL
statements that other procs use to change these attributes. Instead, to change
the appearance of a column, use the FORMAT= and LABEL= column modi-
fiers. List the modifiers after the column name or expression (not separated
by commas). This is an example of a SELECT statement that uses column
modifiers:

SELECT
 START FORMAT=DATE9. LABEL='Start Date',
 END FORMAT=DATE9. LABEL='End Date'
 FROM MAIN.EVENTS
 ORDER BY START, END;

The INFORMAT= and LENGTH= column modifiers can also be used to
set those two attributes. These attributes are especially useful when creating
a table.

When a query column is not a table column, or when the same column
name is used more than once in the same query, it is useful to assign an alias
to it. The alias can be used as a name for the query column anywhere else in
the same query. For example, aliases can be used in column expressions and
WHERE expressions. The alias is also the name of the column in the print
output or in the table or view created from the query. To assign an alias,
write the keyword AS and the alias at the end of the column definition (after
the column modifiers, if there are any). This example includes two column
definitions with aliases:

SELECT
 TEMPERATURE/1.8 + 32 AS TEMPERATURE_FAHRENHEIT,
 PRECIPITATION AS RAIN
 FROM MAIN.WEATHER

516 Professional SAS Programming Logic

 WHERE RAIN > 0 AND TEMPERATURE_FAHRENHEIT >= 32
 ;

If you do not provide an alias for a column that is computed as an
expression, the column is displayed without column headings. If you create a
table or view that includes unnamed columns, the SQL proc generates names
for the columns based on the column numbers.

SQL Expressions
Column expressions and WHERE expressions are two examples of SQL
expressions that result in single values. These SQL expressions are also used
in several other places in SQL syntax. The rules of syntax for SQL expressions
are mostly the same as that of SAS expressions, with these differences:

• The WHERE operators are used.
• Comparison operators do not use the : modifier.
• The NOT operator has the lowest priority of any SQL operator.
• SQL expressions cannot use the queue functions or those that refer to

specific data step objects.
• The INPUT and PUT functions do not use error control terms.
• SQL also supports the COALESCE function. This function returns the

first non-null (nonmissing) value among its arguments. The arguments
can be any number of columns of the same data type.

• The CASE operator of SQL allows logic within an expression that
resembles the SELECT block of the data step. This is an example of a
column definition that uses a CASE expression and an alias:

CASE
 WHEN AMOUNT < 0 THEN 'Credit'
 WHEN AMOUNT > 0 THEN 'Debit'
 ELSE 'No Balance'
 END
AS BALANCE

Dataset Options and Reserved Words in SQL Statements
When SAS datasets are used as tables in SQL statements, you can use any of
the usual dataset options. As always, write the dataset options in parentheses
after the SAS dataset name.

The SQL standards restrict the use of all words that SQL uses as key-
words. In standard SQL, these reserved words cannot be used as the names
of SQL objects. SAS SQL reserves only a few words. The names CASE and
USER cannot be used as column names. If these are names of SAS variables
that you want to use in a query, use the RENAME= dataset option to change
their names.

Do not use SQL keywords as table aliases. Most programmers use single
letters as table aliases; no single letter is a reserved word. It is also safe to use
a letter or word with a numeric suffix, such as T1, as a table alias; no reserved
word has a numeric suffix.

SQL 517

Summary Statistics
SQL can calculate summary statistics for a column. Write the statistic, then
the column name in parentheses. For example, SUM(TRAFFIC) calculates the
sum of the column TRAFFIC. The syntax is the same as a function call, but it
is computed as a column statistic as long as the function name is a statistic
and the argument is a column or column alias.

The available statistics are the standard set of SAS statistics, other than
SKEWNESS and KURTOSIS. In addition to the usual SAS names for the
statistics, AVG can be used as an alias for MEAN and COUNT and FREQ as
aliases for N. Use the expression COUNT(*) to count the rows in a table.

Use aliases to create column names for statistic columns. Without aliases,
statistic columns are displayed without column headings. This is an example
of a query that uses summary statistics as columns:

TITLE1 'RIAA Yearend Statistics (Units Shipped)';
SELECT
 MIN(CD) FORMAT=COMMA14. AS MinCD,
 MIN(CASSETTE) FORMAT=COMMA14. AS MinCassette,
 MIN(LP_EP) FORMAT=COMMA14. AS MinLP_EP,
 MIN(SINGLE) FORMAT=COMMA14. AS MinSingle,
 MEAN(CD) FORMAT=COMMA14. AS AvgCD,
 MEAN(CASSETTE) FORMAT=COMMA14. AS AvgCassette,
 MEAN(LP_EP) FORMAT=COMMA14. AS AvgLP_EP,
 MEAN(SINGLE) FORMAT=COMMA14. AS AvgSingle,
 MAX(CD) FORMAT=COMMA14. AS MaxCD,
 MAX(CASSETTE) FORMAT=COMMA14. AS MaxCassette,
 MAX(LP_EP) FORMAT=COMMA14. AS MaxLP_EP,
 MAX(SINGLE) FORMAT=COMMA14. AS MaxSingle,
 COUNT(*) AS Years
 FROM RIAA.UNITS;

RIAA Yearend Statistics (Units Shipped)

 MinCD MinCassette MinLP_EP MinSingle
 AvgCD AvgCassette AvgLP_EP AvgSingle
 MaxCD MaxCassette MaxLP_EP MaxSingle Years
--
 286,500,000 123,600,000 1,200,000 75,400,000
 622,560,000 280,620,000 3,600,000 117,130,000
 938,900,000 442,200,000 11,700,000 191,500,000 10

A statistic can use the keyword DISTINCT before the column name. With
DISTINCT, the statistic is applied to the set of distinct values in the column,
rather than the values of all the rows. For example, COUNT(PLACE) counts rows
in which PLACE has a value, but COUNT(DISTINCT PLACE) counts the different
values of PLACE. As another example, MEAN(X) is the mean of X for all rows
in the table, but MEAN(DISTINCT X) is the mean of the set of distinct values of
X.

If all columns in a query are summary statistics, the result is one row that
contains a summary of the rows that the query reads. If a query contains a
combination of summary statistics and other expressions, the statistics are

518 Professional SAS Programming Logic

repeated in each row of the result. Combining summary statistics and detail
data in this way is called remerging. A log note indicates the process of
remerging in case you wrote a remerging query without realizing it.

Summary statistics and detail data can be used together in column
expressions. The most common use of this is to calculate percents or relative
frequencies, as in this example:

SELECT BROWSER, HIT FORMAT=COMMA9. AS HITS,
 HIT/SUM(HIT)*100 FORMAT=7.3 AS SHARE
 FROM MAIN.BROWSERS ORDER BY BROWSER;

BROWSER HITS SHARE

AOL 3 811 2.117
Internet Explorer 2 2,667 6.962
Internet Explorer 3 1,085 2.832
Internet Explorer 4 8,515 22.229
Internet Explorer 5 5,377 14.037
Lynx 89 0.232
Netscape 1 163 0.426
Netscape 2 707 1.846
Netscape 3 4,098 10.698
Netscape 4 5,950 15.533
Netscape 5 8,182 21.360
Other 532 1.389
Prodigy 95 0.248
Sega Saturn 35 0.091

Grouping
The GROUP BY clause in a query expression lets you divide the rows of the
query into groups and apply summary statistics within those groups. The
GROUP BY clause follows the WHERE clause, if there is one. It usually lists one
or several columns. This is an example of a GROUP BY clause:

GROUP BY STATE, YEAR

The GROUP BY columns are essentially the same as class variables. They organ-
ize the data into groups. Statistics are calculated within the groups instead of
being calculated for the entire set of data. In this example, statistics are
calculated separately for each state and year.

GROUP BY items are usually table columns, but they can also be column
expressions. If you use an integer as a GROUP BY item, it is used as a column
number, and that column of the query is used for grouping. This makes it
possible to group by computed columns that do not have names. A better
approach, however, is to use aliases for the computed columns.

If there is a GROUP BY clause and all of the columns are summary statistics
or GROUP BY items, the query results in only one row for each group. If the
query contains a combination of summary statistics and other expressions,
the summary statistics are repeated in each row of the group. If summary
statistics are used to calculate percents, they are percents of the total for the
group, rather than percents of the total for the entire set of data.

SQL 519

The simplest use of grouping is to create a frequency table, as shown in
this example:

SELECT SYMBOL, NAME, COUNT(*) AS FREQUENCY
 FROM MAIN.SPLIT GROUP BY SYMBOL, NAME;

SYMBOL NAME FREQUENCY
--
AAPL Apple Computer Inc 1
AOL America Online 5
BRCM Broadcom Corp 2
CPB Campbell Soup 1
CRA PE Corp - Celera Genomics Grp 1
HGSI Human Genome Sciences Inc 1
IBM Intl Business Machines 2
K Kellogg Co 1
QCOM Qualcomm Inc 2
RHAT Red Hat Inc 1
SUNW Sun Microsystems 4
TWX Time Warner Inc 1
YHOO Yahoo Inc 4

You cannot use the WHERE clause to select groups or rows based on
summary statistics of a group. That is because the WHERE clause is always
evaluated separately for each individual row. Instead, when a condition con-
tains summary statistics, write it in a HAVING clause. Write the HAVING
clause after the GROUP BY clause. In a query that has no GROUP BY clause, a
HAVING clause is applied to all the rows as one group.

The HAVING condition is used instead of the WHERE condition in quer-
ies that combine summary rows of tables. The criterion for matching sum-
mary rows must be written in the HAVING clause, rather than the WHERE
clause, because the WHERE clause applies only to individual rows, not to the
summary rows of groups.

Other Queries
SQL has several more features that make a much wider range of queries
possible.

• Table join operators represent alternate ways to combine two tables:
LEFT JOIN, RIGHT JOIN, and FULL JOIN.

• Set operators combine the results of two query expressions. The set
operators are UNION, OUTER UNION, EXCEPT, and INTERSECT. The
INTERSECT operator can modified by the CORRESPONDING and ALL

modifiers.
• A database query is an expression in the form CONNECTION TO database

(query expression). The query is passed to a database, and the results
that are returned from the database are used within the SAS query
expression. This SQL pass-through feature requires SAS/ACCESS and
other statements within the PROC SQL step to connect to the database.

• Subqueries are queries written in parentheses and used as values
or as tables within a query expression. This is an example of the use of

520 Professional SAS Programming Logic

a subquery to determine the number of different combinations of values
for two columns:

 SELECT COUNT(*) AS N
 FROM (SELECT DISTINCT DEPT, VENDOR FROM CORP.SOURCE);

• An INTO clause in a query expression assigns the results of the query to
macro variables.

DICTIONARY Tables
The special libref DICTIONARY contains tables that can only be used in SQL
queries. These tables list objects in the SAS environment:

DICTIONARY.OPTIONS System options
DICTIONARY.TITLES Title and footnote lines
DICTIONARY.EXTFILES Filerefs
DICTIONARY.MEMBERS SAS files
DICTIONARY.CATALOGS Catalogs
DICTIONARY.MACROS Macros
DICTIONARY.TABLES SAS data files
DICTIONARY.VIEWS Views
DICTIONARY.COLUMNS Variables in SAS datasets
DICTIONARY.INDEXES Indexes

You can query these tables in a SAS program to get information about
objects and settings in the SAS session. For example, this query returns
information on the PAGENO system option, including its current value:

SELECT * FROM DICTIONARY.OPTIONS WHERE OPTION='PAGENO';

optname setting optdesc level
--
PAGENO 1 Beginning page number for Portable
 the next page of output
 produced by the SAS System

To get a list of the columns in a DICTIONARY table, use a DESCRIBE TABLE

statement, such as:

DESCRIBE TABLE DICTIONARY.COLUMNS;

Database Management Actions
Other SQL statements are designed to manage data. These statements can
create, describe, update, modify, and delete various objects, including tables
and views and the indexes and integrity constraints of a table. The following
table summarizes the database management actions that are available in SAS
SQL.

SQL 521

Action Object Statement
Create Table CREATE TABLE table (definition, . . .);

CREATE TABLE table LIKE table;

CREATE TABLE table AS query expression;

View CREATE VIEW view AS query expression;

Index CREATE INDEX index ON TABLE (column, . . .)

Constraint ALTER TABLE table ADD CONSTRAINT constraint rule;

Describe Table DESCRIBE TABLE table;

View DESCRIBE VIEW view;

Constraint DESCRIBE TABLE CONSTRAINTS table;

Update Table UPDATE table SET column=value, . . .
WHERE condition;

INSERT INTO table SET column=value, . . . or
VALUES (value, . . .) or query expression;

DELETE FROM table WHERE condition;

Modify Table ALTER TABLE table action;

Delete Table DROP TABLE table;

View DROP VIEW view;

Index DROP INDEX index FROM table;

Constraint ALTER TABLE table DROP CONSTRAINT constraint;

Indexes and integrity constraints and the SQL statements for creating
them are described in chapter 11, “Options for SAS Datasets.”

Describing
The DESCRIBE statement creates a log note that provides a description of a
view or table or the constraints of a table. The DESCRIBE VIEW statement shows
the query program that is stored in a view, with a log note similar to the one
shown in this example:

DESCRIBE VIEW SASHELP.VTABLE;

NOTE: SQL view SASHELP.VTABLE is defined as:

 select *
 from DICTIONARY.TABLES;

The DESCRIBE TABLE generates a log note in the form of a CREATE TABLE
statement that might have originally defined the table. This is an example:

DESCRIBE TABLE RIAA.YEAREND;

NOTE: SQL table RIAA.YEAREND was created like:

create table RIAA.YEAREND(bufsize=4096)
 (
 YEAR num,
 CD num,
 CASSETTE num,

522 Professional SAS Programming Logic

 LP_EP num,
 SINGLE num
);

For a table that has constraints, the DESCRIBE TABLE and DESCRIBE TABLE

CONSTRAINTS statements generate the same “Alphabetic List of Integrity Con-
straints” that the CONTENTS proc generates.

Creating a Table
The CREATE TABLE statement creates a new table. Define the columns for the
new table in a list of column definitions in parentheses after the table name in
the CREATE TABLE statement:

CREATE TABLE table (column definition, . . .);

This form of the CREATE TABLE statement creates a table with no rows. You can
then add rows to the table using other SQL statements.

This example creates the table MAIN.STOCK with the columns SYMBOL,
DATE, and CLOSE:

CREATE TABLE MAIN.STOCK (SYMBOL CHAR(8), DATE DATE, CLOSE NUM);

NOTE: Table MAIN.STOCK created, with 0 rows and 3 columns.

Use the DESCRIBE TABLE statement with existing tables, as shown above, to see
more examples of this kind of CREATE TABLE statement.

A column definition consists of the column name, its data type, and any
column modifiers. Column modifiers declare attributes such as the format
and label, as described earlier in this chapter.

The SAS data types are character and numeric. SQL syntax also provides
several other data types, but all the data types are actually stored in SAS files
as the numeric and character data types. Some data types use arguments to
set the width of the value. The following table lists the data types that are
available in SAS SQL.

SAS SQL Data Types

SQL Data Type Aliases Arguments1 SAS Data Type
REAL DOUBLE PRECISION Numeric
DECIMAL NUM

NUMERIC
DEC
FLOAT

(width, decimal) Numeric

INTEGER INT
SMALLINT

Numeric

DATE Numeric
CHARACTER CHAR

VARCHAR
(width) Character

1 The arguments are optional. The default width of a character column is 8.

SQL 523

To create a new table that has the same columns as an existing table,
name the existing table in a LIKE clause. For example, this statement creates
the table MAIN.DEST that has the same columns as the table MAIN.ORIGIN:

CREATE TABLE MAIN.DEST LIKE MAIN.ORIGIN;

To create a table that contains rows when you create it, use the AS clause
of the CREATE TABLE statement, as described earlier in this chapter. The CREATE

TABLE statement with an AS clause creates a new table with the results of a
query expression.

Modifying and Updating a Table
You can change the data and structure of an existing table by adding,
modifying, and deleting rows and columns.

Use the ALTER TABLE statement for actions on columns. The ALTER TABLE

statement indicates the table name followed by the details of an action on the
table. An ADD clause contains column definitions to add columns to the
table. For example, this statement adds the numeric columns FORECAST and
ERROR to the table CORP.REVENUE:

ALTER TABLE CORP.REVENUE
 ADD
 FORECAST NUMERIC FORMAT=COMMA14.,
 ERROR NUMERIC FORMAT=COMMA14.2;

NOTE: Table CORP.REVENUE has been modified, with 11 columns.

Similarly, a MODIFY clause contains column definitions with column modifi-
ers to apply new attributes to existing columns.

A DROP clause contains a list of columns to remove from the table. This
ALTER TABLE statement deletes the columns CENTER and REGION from the
table CORP.REVENUE:

ALTER TABLE CORP.REVENUE
 DROP CENTER, REGION;

NOTE: Table CORP.REVENUE has been modified, with 9 columns.

The INSERT statement adds rows to a table. It can also be used to add
rows to some kinds of SQL views. To add rows with specific values, use the
VALUES clause in the INSERT statement with a list of values in parentheses.
The example below adds a row to the table MAIN.STOCK, which was de-
fined in an earlier example with the columns SYMBOL, DATE, and CLOSE.
In the new row, SYMBOL has a value of 'CPB', DATE has a value of
'30DEC1994'D, and CLOSE has a value of 21.07.

INSERT INTO MAIN.STOCK VALUES ('CPB', '30DEC1994'D, 21.07);

NOTE: 1 row was inserted into MAIN.STOCK.

524 Professional SAS Programming Logic

You can list selected columns of the table after the table name in the
INSERT statement. List the values in the same order in the VALUES clause.
This example adds another row to MAIN.STOCK:

INSERT INTO MAIN.STOCK (SYMBOL, DATE, CLOSE)
 VALUES ('CPB', '31DEC1999'D, 38.69);

NOTE: 1 row was inserted into MAIN.STOCK.

Any columns that are not listed get null values in the new rows of the table.
Use multiple VALUES clauses to add multiple rows. For example:

INSERT INTO MAIN.STOCK (SYMBOL, DATE, CLOSE)
 VALUES ('AOL', '30DEC1994'D, 0.88)
 VALUES ('AOL', '31DEC1999'D, 75.88)
 VALUES ('TWX', '30DEC1994'D, 17.56)
 VALUES ('TWX', '31DEC1999'D, 72.31)
 ;

NOTE: 4 rows were inserted into MAIN.STOCK.

To add existing data to a table, use a query expression in the INSERT
statement. Write the query expression so that its columns are in the same
order as the columns of the table or the columns listed in the INSERT state-
ment. This is an example:

INSERT INTO MAIN.STOCK SELECT SYMBOL, DATE(), CLOSE FROM MAIN.DAILY;

Another way to add rows to a table is with the SET clause. In a SET
clause, each column is listed with an equals sign and a value for the column,
much like an assignment statement. Any columns that are not listed get null
values in the new row. Use multiple SET clauses to add multiple rows. This
example adds four rows to a table:

INSERT INTO MAIN.STOCK
 SET SYMBOL='HGSI', DATE='30DEC1994'D, CLOSE=7.38
 SET SYMBOL='HGSI', DATE='31DEC1999'D, CLOSE=76.31
 SET SYMBOL='CRA', DATE='28APR1999'D, CLOSE=12.50
 SET SYMBOL='CRA', DATE='31DEC1999'D, CLOSE=74.50
 ;

The UPDATE statement modifies existing values in a table. It uses a SET
clause written the same way as the SET clause of the INSERT statement. Usu-
ally, the UPDATE statement includes a WHERE clause so that changes are
made in one specific row or a selected set of rows. The new values of the SET
clause are applied to all rows that meet the WHERE condition. Columns that
are not listed in the SET clause are not changed. If there is no WHERE clause,
the new values are applied to every row in the table.

This example changes one specific value to another in one column of a
table:

UPDATE CORP.SOURCE SET VENDOR='Time Warner Inc.'
 WHERE VENDOR = 'Warner Communications Corp.';

SQL 525

NOTE: 4 rows were updated in CORP.SOURCE.

The DELETE statement removes rows from a table. A WHERE clause
identifies the rows to delete. Without a WHERE clause, the DELETE state-
ment removes all rows from a table. This statement removes from the table
MAIN.ACTIVE any rows for which the value of EXPIR is earlier than the
current date returned by the DATE function:

DELETE FROM MAIN.ACTIVE WHERE EXPIR < DATE();

NOTE: 5 rows were deleted from MAIN.ACTIVE.

Deleting
Use the DROP statement to delete a table, view, or index. To delete tables, list
them in the DROP TABLE statement, for example:

DROP TABLE WORK.TEMP1, WORK.TEMP2, WORK.TEMP3;

NOTE: Table WORK.TEMP1 has been dropped.
NOTE: Table WORK.TEMP2 has been dropped.
NOTE: Table WORK.TEMP3 has been dropped.

To delete views, list them in the DROP VIEW statement. To delete indexes from
a table, list the indexes in the DROP INDEX statement followed by a FROM
clause to identify the table. For example, this statement removes three
indexes from the table CORP.CENTURY:

DROP INDEX PRIORITY, CONT, START FROM CORP.CENTURY;

NOTE: Index PRIORITY has been dropped.
NOTE: Index CONT has been dropped.
NOTE: Index START has been dropped.

Database Connections
The statements described here act on SAS files. It is also possible to take
actions on an external database in the PROC SQL step. This is part of the SQL
pass-through feature of SAS/ACCESS. The CONNECT statement establishes
a connection to a specific database; the EXECUTE statement passes an SQL
statement to the database for execution; the CONNECTION TO clause in a query
passes a query to the database; and the DISCONNECT statement ends the
connection to the database.

SQL Execution
SQL performance cannot be easily predicted from the appearance of the SQL
statements. You get a more accurate idea by considering the processing that a
statement requires. Options in the SQL proc control details of its actions and
can help you deal with the performance issues of SQL.

526 Professional SAS Programming Logic

Engine Requirements and Performance Issues
When SAS data files are used as SQL tables, they are still subject to the
usual limits and considerations that apply to SAS data files. The file’s storage
device and its library engine must support the specific kind of action that
is requested in an SQL statement. For example, you must have write access
to a library to execute the CREATE TABLE and DROP TABLE statements; the
engine must support update access to execute the UPDATE and DELETE
statements. Some view engines support update access; statements such as
UPDATE and DELETE can be executed for those views, but not for other
views, such as data step views.

The speed of SQL actions tends to be similar to that of other proc steps
and data steps doing similar things. For example, when you sort a table with
an ORDER BY clause, that uses approximately the same computer resources
as sorting with the SORT proc; forming groups with a GROUP BY clause is
comparable to forming them with a CLASS statement in another proc step.
Adding and dropping columns in a large table can be a substantial task,
because the SAS supervisor has to completely rewrite the table, the same way
it would if you used a data step to add or remove a variable.

Table joins are a special area of concern in SQL programming, whether in
the SAS environment or elsewhere. An SQL table join produces, at least in
theory, every combination of rows of the tables (an effect often described as a
Cartesian product). It then reduces the number of resulting rows by applying
the relevant conditions from the WHERE and HAVING clauses. The number
of rows produced in a join is the product of the number of rows of each of the
tables. For two large tables or for four or more small tables, this can be a very
large number of rows. For example, if two tables each have one million rows,
joining the two tables generates one trillion rows. The same is true when you
join four tables that each have 1,000 rows, or six tables that each have 100
rows. Table joins on this kind of scale can take a very long time to execute, or
they might execute quickly, depending on other details of the processing that
should be carefully considered. Similar issues may arise when a query
contains subqueries or views.

The processing time for a query is not necessarily proportional to the
number of rows read or generated, because the SAS supervisor optimizes
queries to eliminate some unnecessary work. Joins can sometimes execute
much faster when the WHERE conditions are written in a certain way and
the appropriate indexes exist for the tables. Investigate these issues if a query
takes too long to run. Several performance options of the SQL proc can
reduce the risk that a poorly designed query may accidentally run for a very
long time.

Options
Options for the PROC SQL step can be initialized in the PROC SQL statement.
They can be changed in the RESET statement, which can appear between any
two SQL statements in the step. The following table describes the options.

SQL 527

Option Description
EXEC Executes SQL statements.

NOEXEC Checks the syntax of SQL statements, but does not execute
them.

PRINT Prints the results of SELECT statements.

NOPRINT Executes SELECT statements, but does not print the
results. This can be useful when you use a SELECT
statement to assign the results of a query to macro
variables.

NUMBER Prints a column called Row that contains row numbers.

NONUMBER Removes the Row column.

DOUBLE Writes blank lines between rows in the print output.

NODOUBLE Does not write blank lines between rows.

FLOW=width Sets the width of character columns and flows longer
character values on multiple lines.

FLOW=min max Sets the minimum and maximum width of character
columns. The SAS supervisor adjusts the column widths to
make effective use of the width of the page.

FLOW Equivalent to FLOW=12 200.

NOFLOW Writes long character values consecutively, without
flowing them.

FEEDBACK Shows log messages with the query code that results
when the SQL interpreter expands view references and
wild-card references in a query.

NOFEEDBACK Does not show expanded query code.

SORTMSG Generates log messages about sort operations.

NOSORTMSG Does not show messages about sort operations.

SORTSEQ=collating
sequence

The collating sequence for sorting.

DQUOTE=ANSI Treats text in double quotes as names, following the ANSI
standards for SQL syntax.

DQUOTE=SAS Treats text in double quotes as character values, following
the rules of SAS syntax.

ERRORSTOP Stops executing SQL statements after an error occurs.

NOERRORSTOP Continues to execute SQL statements after an error occurs.

LOOPS=n Limits the number of loop iterations in the execution of a
query. Use this option especially for untested query
expressions to limit the computer time and resources that
an improperly constructed query might use.

INOBS=n Limits the number of input rows from a table. This option
is especially useful for debugging and testing queries.

OUTOBS=n Limits the number of output rows from a query.

continued

528 Professional SAS Programming Logic

Option Description
PROMPT Prompts the interactive user with the option to continue or

stop when a query reaches the limit of the LOOPS=,
INOBS=, or OUTOBS= option.

NOPROMPT Stops executing when a query reaches the limit of the
LOOPS=, INOBS=, or OUTOBS= option.

STIMER Writes performance statistics in the log for each SQL
statement. This requires the STIMER system option.

NOSTIMER Writes performance statistics in the log for the SQL step as
a whole. This requires the STIMER system option.

Checking for Errors
The VALIDATE statement lets you check the syntax of a query expression
without executing it:

VALIDATE query expression;

SQL statements also generate several automatic macro variables that help
you keep track of SQL performance and errors. The macro variable SQLOBS
indicates the number of rows generated by a query or otherwise processed
by an SQL statement. The macro variable SQLOOPS counts the number of
row iterations required to execute a query.

The macro variable SQLRC is an error code. A value of 0 indicates that
the SQL statement completed successfully. A positive value indicates a
problem. The following table describes the various possible values of SQLRC.

Value Meaning
0 The statement completed successfully.

4 There was something questionable about the statement. A warning
message was issued.

8 Execution stopped because the statement contained an error.

12 There was a bug in the SQL interpreter.

16 The statement used data objects incorrectly.

24 Execution stopped because of an operating system failure.

28 There was a bug in SQL execution.

This example shows the value of SQLRC after an incorrect coded query:

SELECT COUNT(*);
%PUT &SQLRC;

8

Two more automatic macro variables, SQLXRC and SQLXMSG, contain
error codes and messages from the SQL pass-through facility.

